

Limit

Average 2

Average 1

The average (2) of the yellow option is higher then the average (1) of the green option. However the green option is more uncertain (the distribution is wider). In option 1 it is more likely that the set limit will be exceeded. Therefore despite the higher average, the yellow option is the preferred one if the aim is

Huddersfield 2015 -2 1-... not to exceed the limit.

Hazard Barrier Target model

Barrierology (ARAMIS)

- Material Barrier
 - Shields
 - Fences
 - Relief valves
- Immaterial Barrier
 - Rules
 - Regulations
 - Lines on the floor

Swiss Cheese model

Figure 1.: Black box

Figure 3: Function box in SADT

Parameter excursion Consequence(s) ETC. Actuator

Logic

failure

failure

Alarm

failure

Incentive structure

In(ter)dependency

- All this stuff is NOT independent
- Machinery and equipment have producers
- Installation and maintenance is done by contractors
- And then there is Management and Market

Coupling

- Too much play: rattle
- Not enough play: overheat
- Just enough play (and some lubrication) ok

Perrow

Inmaneagability

Look at all behaviour, not only incidents and accidents

Figure 5: Random variations can give rise to very extreme values

Causal Model for Air Transport Safety: approx. 1500 nodes, 4000 arcs

System failure - spatial disorientation - bad roll handling - reverse truster failure

Conditionalize on latest aircraft generation

Platypus

- Takes Shells inventory list
- Convert it in BBN structures
- Guide the user through necessary specifications
- Connects to human model and management model where appropriate
- Do the sums

Figure 9: Money spent for safety and Probability of accident – Simulation "เป็นเป็น ใช้ "ไป" time steps

The denominator problem

You do know the number of accidents

But you do not know how many hours of exposure
or numbers

For SPAD: how many signals at danger are passed How many signals at danger are NOT passed How many signals are passed at safe??
How many signals are there

Velocity distribution??

Population problem

- Say factor X is a potential cause for accident S.
 - Result from an inquiry says it is
- How many instances were there when accident S occurred without factor X
- How many instances were there when the factor X occurred without S occurring
- Is it more likely to have S given X??

WORM

- Not only a database of ALL accidents
- But also an intensive investigation into exposure.
- Som

Data

- Use quantification from storybuilds
 - These are probabilities given a reported accident
- Get the exposure data from survey
- NB user survey nr 1 shows that many "barrier failure events" never result in a reportable or reported accident.
 - This should be a warning for drawing improvement conclusions

Causality problem

- In Oldenburg a long term correlation was shown between the number of storks and the number of babies born
- ERGO:
- From he post accident investigation(s)....

Find the accidents problem

- Events with very low probability (say 10-5 or lower)
- Either need long perion of observation
 - But Homo Sapiens only exists for 200,000 yrs
- Or large population
- And to significant it would be better to have 10M than 1M observations.
- IE Big Data

Location of hazardous sites in the Netherlands

National risk-contours

Locatie informatie

Large consequence, small probability, large uncertainties

Swans

- Were all white
- Untill 1697
- There proved to be black ones too
 - Willem de Vlamingh

Dragons

- There are millions of books about dragons
 - (and there was not one about black swans)
- Do we need an anti dragon defense shield (ADDS)
- And if we think we don't, what are we going to say, when one appears.

Non zero is NOT ZERO

- Tunnel diode
- Eleven meter tsunami's
- Stock prizes going down
- People not paying there debts
- Floods in the Netherlands
- Oil wells kicking back
-etc

- Much of the political debate is because politicians (and managers) confuse low probability with zero probability
 - (This will not happen to us)

If you can

- Do some work and improve your information position
 - But for purely aleatory problems this will not help
- Better estimate of the outcome
- Better estimate of the uncertainty
- You might learn something.

Reduce variability (if you can)

- Same as quality control really
- So monitor the behavior of people and give feedback.
- Eg consistent speed profiles reduce the probability of SPAD.
- But this requires more data (and the data become big)

- Laws of nature as we understand them usually apply
 - A change in our understanding is very unlikely
- Mathematical logic usually applies
 - But this is sometimes difficult to accept
- Often the question is not WHETHER something can happen but WHEN it will happen.
 - And whether you can avoid the consequences.

